ECED 3300
 Tutorial 2

Problem 1

Determine gradients of the following functions
a) $f(x, y, z)=x y z$;
b) $f(x, y, z)=x^{2}+y^{2}+z^{2}$.

Solution

a) By definiition, $\nabla f=\mathbf{a}_{x} \partial_{x} f+\mathbf{a}_{y} \partial_{y} f+\mathbf{a}_{z} \partial_{z} f=y z \mathbf{a}_{x}+x z \mathbf{a}_{y}+x y \mathbf{a}_{z}$.
b) In the Cartesian coordinates, $\nabla f=\mathbf{a}_{x} \partial_{x} f+\mathbf{a}_{y} \partial_{y} f+\mathbf{a}_{z} \partial_{z} f=2\left(x \mathbf{a}_{x}+y \mathbf{a}_{y}+z \mathbf{a}_{z}\right)=2 \mathbf{r}$. In the spherical coordinates, $f=x^{2}+y^{2}+z^{2}=r^{2}$. Thus, $\nabla f=\mathbf{a}_{r} \partial_{r} r^{2}=2 r \mathbf{a}_{r}=2 \mathbf{r}$.

Problem 2

The temperature in a room is distributed according to $T(x, y, z)=x^{2}+y^{2}-z$. A mosquito, located at $(1,1,2)$ in the room, seeks to fly in the direction of the fastest temperature increase. Which direction will it fly in?

Solution

Recall that the direction of the fastest growth/decay of a scalar field at a given point is determined by the field gradient direction at the point. By definition,

$$
\nabla T=\mathbf{a}_{x} \partial_{x} T+\mathbf{a}_{y} \partial_{y} T+\mathbf{a}_{z} \partial_{z} T=2 x \mathbf{a}_{x}+2 y \mathbf{a}_{y}-\mathbf{a}_{z}
$$

Thus at ($1,1,2$),

$$
\nabla T(1,1,2)=2 \mathbf{a}_{x}+2 \mathbf{a}_{y}-\mathbf{a}_{z} ; \quad|\nabla T(1,1,2)|=3
$$

Hence the direction sought by the mosquito is specified by the unit vector,

$$
\mathbf{a}_{s}=\frac{\nabla T(1,1,2)}{|\nabla T(1,1,2)|}=\frac{1}{3}\left(2 \mathbf{a}_{x}+2 \mathbf{a}_{y}-\mathbf{a}_{z}\right) .
$$

Problem 3

Show that a unit normal to the surface specified by $z=f(x, y)$ is given by the expression,

$$
\mathbf{a}_{n}=\frac{-\mathbf{a}_{x} \partial_{x} f-\mathbf{a}_{y} \partial_{y} f+\mathbf{a}_{z}}{\sqrt{1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}}}
$$

Solution

The equation for a surface can be rewritten in the form,

$$
F(x, y, z)=z-f(x, y)=0
$$

The gradient of a scalar field F is known to be normal to any surface of constant F, in particular, to $F(x, y, z)=0$. Hence a normal to the surface coincides with a normalized gradient of F. The latter follows from the definition to be

$$
\nabla F=\mathbf{a}_{x} \partial_{x} F+\mathbf{a}_{y} \partial_{y} F+\mathbf{a}_{z} \partial_{z} F=-\mathbf{a}_{x} \partial_{x} f-\mathbf{a}_{y} \partial_{y} f+\mathbf{a}_{z}
$$

Further,

$$
|\nabla F|=\sqrt{1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}}
$$

Thus,

$$
\mathbf{a}_{n}=\frac{\nabla F}{|\nabla F|}=\frac{-\mathbf{a}_{x} \partial_{x} f-\mathbf{a}_{y} \partial_{y} f+\mathbf{a}_{z}}{\sqrt{1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}}}
$$

Q.E.D.

Problem 4

Given $\mathbf{E}=\mathbf{a}_{x} y z+\mathbf{a}_{y} x z+\mathbf{a}_{z} x y$ and a hemisphere of radius R in the upper half-space $z>0$, rimmed by a circle in the xy-plane, find the flux through the hemisphere.

Solution

The hemisphere plus the circle form a closed surface to which a Gauss' theorem is applicable,

$$
\oint_{S} d \mathbf{S} \cdot \mathbf{E}=\int d v \nabla \cdot \mathbf{E} .
$$

By definition,

$$
\nabla \cdot \mathbf{E}=\partial_{x} E_{x}+\partial_{y} E_{y}+\partial_{z} E_{z}=\partial_{x}(y z)+\partial_{y}(x z)+\partial_{z}(x y)=0
$$

Hence,

$$
\oint_{S} d \mathbf{S} \cdot \mathbf{E}=0
$$

Problem 5

Determine the flux $\Phi=\int d \mathbf{S} \cdot \mathbf{F}$ in the following situations:
a) $\mathbf{F}=\mathbf{a}_{x} x+\mathbf{a}_{y} y+\mathbf{a}_{z} z$ and the surface is three squares of side b in the $x y, x z$ and $y z$ planes intersecting at the origin.
b) $\mathbf{F}=\left(\mathbf{a}_{x} x+\mathbf{a}_{y} y\right) \ln \left(x^{2}+y^{2}\right)$ and the surface is a cylinder of radius R and height h with its bottom in the xy-plane and its axis coinciding with the z-axis.
c) $\mathbf{F}=\left(\mathbf{a}_{x} x+\mathbf{a}_{y} y+\mathbf{a}_{z} z\right) e^{-\left(x^{2}+y^{2}+z^{2}\right)}$ and the surface is a sphere of radius R, centered at the origin.

Solution

a) It is sufficient to work out the field on the surfaces $z=0, y=0$ and $x=0$:

- at $z=0, \mathbf{a}_{n}=\mathbf{a}_{z}, \mathbf{F} \cdot \mathbf{a}_{n}=F_{z}(z=0)=0 ;$
- By symmetry, at $x=0, \mathbf{a}_{n}=\mathbf{a}_{x}, \mathbf{F} \cdot \mathbf{a}_{n}=F_{x}(x=0)=0$, and at $y=0, \mathbf{a}_{n}=\mathbf{a}_{y}$, $\mathbf{F} \cdot \mathbf{a}_{n}=F_{y}(y=0)=0$.

Thus,

$$
\Phi=0
$$

b) At the top and bottom $\mathbf{a}_{n}= \pm \mathbf{a}_{z}$. It follows that $\mathbf{F} \cdot \mathbf{a}_{n}=0$. On the wall, $\rho=R, \mathbf{a}_{n}=\mathbf{a}_{\rho}$, and $d S=R d \phi d z$. Hence,
$\Phi=\int_{0}^{h} d z \int_{0}^{2 \pi} d \phi\left[R^{2} \ln R\left(\mathbf{a}_{\rho} \cdot \mathbf{a}_{x}\right) \cos \phi+R^{2} \ln R\left(\mathbf{a}_{\rho} \cdot \mathbf{a}_{y}\right) \sin \phi\right]=h R^{2} \ln R \int_{0}^{2 \pi} d \phi\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=2 \pi h R^{2} \ln R$.
c) On the sphere $r=R, \mathbf{a}_{n}=\mathbf{a}_{r}$ and $d S=R^{2} \sin \theta d \theta d \phi$. Also, it is convenient to shift to the spherical coordinates such that

$$
\mathbf{F}=R\left(\mathbf{a}_{x} \sin \theta \cos \phi+\mathbf{a}_{y} \sin \theta \sin \phi+\mathbf{a}_{z} \cos \theta\right) e^{-R^{2}}
$$

It follows that

$$
\Phi=R^{3} e^{-R^{2}} \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi\left(\mathbf{a}_{x} \sin \theta \cos \phi+\mathbf{a}_{y} \sin \theta \sin \phi+\mathbf{a}_{z} \cos \theta\right) \cdot \mathbf{a}_{r}
$$

Using the fact that

$$
\mathbf{a}_{r} \cdot \mathbf{a}_{x}=\sin \theta \cos \phi, \quad \mathbf{a}_{r} \cdot \mathbf{a}_{y}=\sin \theta \sin \phi, \quad \mathbf{a}_{r} \cdot \mathbf{a}_{z}=\cos \theta
$$

we obtain after elementary trigonometry that

$$
\Phi=R^{3} e^{-R^{2}} \int_{0}^{\pi} d \theta \sin \theta \int_{0}^{2 \pi} d \phi\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4 \pi R^{3} e^{-R^{2}}
$$

