ECED 3300 Tutorial 2

Problem 1

Determine gradients of the following functions

a) f(x, y, z) = xyz;b) $f(x, y, z) = x^2 + y^2 + z^2.$

Solution

a) By definition, ∇f = a_x∂_xf + a_y∂_yf + a_z∂_zf = yza_x + xza_y + xya_z.
b) In the Cartesian coordinates, ∇f = a_x∂_xf + a_y∂_yf + a_z∂_zf = 2(xa_x + ya_y + za_z) = 2**r**. In the spherical coordinates, f = x² + y² + z² = r². Thus, ∇f = a_r∂_rr² = 2ra_r = 2**r**.

Problem 2

The temperature in a room is distributed according to $T(x, y, z) = x^2 + y^2 - z$. A mosquito, located at (1, 1, 2) in the room, seeks to fly in the direction of the fastest temperature increase. Which direction will it fly in?

Solution

Recall that the direction of the fastest growth/decay of a scalar field at a given point is determined by the field gradient direction at the point. By definition,

$$\nabla T = \mathbf{a}_x \partial_x T + \mathbf{a}_y \partial_y T + \mathbf{a}_z \partial_z T = 2x\mathbf{a}_x + 2y\mathbf{a}_y - \mathbf{a}_z$$

Thus at (1, 1, 2),

$$\nabla T(1, 1, 2) = 2\mathbf{a}_x + 2\mathbf{a}_y - \mathbf{a}_z; \qquad |\nabla T(1, 1, 2)| = 3.$$

Hence the direction sought by the mosquito is specified by the unit vector,

$$\mathbf{a}_{s} = \frac{\nabla T(1, 1, 2)}{|\nabla T(1, 1, 2)|} = \frac{1}{3}(2\mathbf{a}_{x} + 2\mathbf{a}_{y} - \mathbf{a}_{z}).$$

Problem 3

Show that a unit normal to the surface specified by z = f(x, y) is given by the expression,

$$\mathbf{a}_n = \frac{-\mathbf{a}_x \partial_x f - \mathbf{a}_y \partial_y f + \mathbf{a}_z}{\sqrt{1 + (\partial_x f)^2 + (\partial_y f)^2}}$$

Solution

The equation for a surface can be rewritten in the form,

$$F(x, y, z) = z - f(x, y) = 0.$$

The gradient of a scalar field F is known to be normal to any surface of constant F, in particular, to F(x, y, z) = 0. Hence a normal to the surface coincides with a normalized gradient of F. The latter follows from the definition to be

$$\nabla F = \mathbf{a}_x \partial_x F + \mathbf{a}_y \partial_y F + \mathbf{a}_z \partial_z F = -\mathbf{a}_x \partial_x f - \mathbf{a}_y \partial_y f + \mathbf{a}_z.$$

Further,

$$|\nabla F| = \sqrt{1 + (\partial_x f)^2 + (\partial_y f)^2}.$$

Thus,

$$\mathbf{a}_n = \frac{\nabla F}{|\nabla F|} = \frac{-\mathbf{a}_x \partial_x f - \mathbf{a}_y \partial_y f + \mathbf{a}_z}{\sqrt{1 + (\partial_x f)^2 + (\partial_y f)^2}}$$

Q.E.D.

Problem 4

Given $\mathbf{E} = \mathbf{a}_x yz + \mathbf{a}_y xz + \mathbf{a}_z xy$ and a hemisphere of radius R in the upper half-space z > 0, rimmed by a circle in the xy-plane, find the flux through the hemisphere.

Solution

The hemisphere plus the circle form a closed surface to which a Gauss' theorem is applicable,

$$\oint_S d\mathbf{S} \cdot \mathbf{E} = \int dv \nabla \cdot \mathbf{E}$$

By definition,

$$\nabla \cdot \mathbf{E} = \partial_x E_x + \partial_y E_y + \partial_z E_z = \partial_x (yz) + \partial_y (xz) + \partial_z (xy) = 0.$$

Hence,

$$\oint_S d\mathbf{S} \cdot \mathbf{E} = 0.$$

Problem 5

Determine the flux $\Phi = \int d\mathbf{S} \cdot \mathbf{F}$ in the following situations:

a) $\mathbf{F} = \mathbf{a}_x x + \mathbf{a}_y y + \mathbf{a}_z z$ and the surface is three squares of side b in the xy, xz and yz planes intersecting at the origin.

b) $\mathbf{F} = (\mathbf{a}_x x + \mathbf{a}_y y) \ln(x^2 + y^2)$ and the surface is a cylinder of radius R and height h with its bottom in the xy-plane and its axis coinciding with the z-axis.

c) $\mathbf{F} = (\mathbf{a}_x x + \mathbf{a}_y y + \mathbf{a}_z z)e^{-(x^2+y^2+z^2)}$ and the surface is a sphere of radius R, centered at the origin.

Solution

a) It is sufficient to work out the field on the surfaces z = 0, y = 0 and x = 0:

- at z = 0, $\mathbf{a}_n = \mathbf{a}_z$, $\mathbf{F} \cdot \mathbf{a}_n = F_z(z = 0) = 0$;
- By symmetry, at x = 0, $\mathbf{a}_n = \mathbf{a}_x$, $\mathbf{F} \cdot \mathbf{a}_n = F_x(x = 0) = 0$, and at y = 0, $\mathbf{a}_n = \mathbf{a}_y$, $\mathbf{F} \cdot \mathbf{a}_n = F_y(y = 0) = 0$.

Thus,

$$\Phi = 0.$$

b) At the top and bottom $\mathbf{a}_n = \pm \mathbf{a}_z$. It follows that $\mathbf{F} \cdot \mathbf{a}_n = 0$. On the wall, $\rho = R$, $\mathbf{a}_n = \mathbf{a}_\rho$, and $dS = Rd\phi dz$. Hence,

$$\Phi = \int_0^h dz \int_0^{2\pi} d\phi \left[R^2 \ln R(\mathbf{a}_{\rho} \cdot \mathbf{a}_x) \cos \phi + R^2 \ln R(\mathbf{a}_{\rho} \cdot \mathbf{a}_y) \sin \phi \right] = hR^2 \ln R \int_0^{2\pi} d\phi (\cos^2 \phi + \sin^2 \phi) = 2\pi hR^2 \ln R$$

c) On the sphere r = R, $\mathbf{a}_n = \mathbf{a}_r$ and $dS = R^2 \sin \theta d\theta d\phi$. Also, it is convenient to shift to the spherical coordinates such that

$$\mathbf{F} = R(\mathbf{a}_x \sin \theta \cos \phi + \mathbf{a}_y \sin \theta \sin \phi + \mathbf{a}_z \cos \theta) e^{-R^2}$$

It follows that

$$\Phi = R^3 e^{-R^2} \int_0^\pi d\theta \sin\theta \int_0^{2\pi} d\phi (\mathbf{a}_x \sin\theta \cos\phi + \mathbf{a}_y \sin\theta \sin\phi + \mathbf{a}_z \cos\theta) \cdot \mathbf{a}_y$$

Using the fact that

$$\mathbf{a}_r \cdot \mathbf{a}_x = \sin \theta \cos \phi, \qquad \mathbf{a}_r \cdot \mathbf{a}_y = \sin \theta \sin \phi, \qquad \mathbf{a}_r \cdot \mathbf{a}_z = \cos \theta.$$

we obtain after elementary trigonometry that

$$\Phi = R^3 e^{-R^2} \int_0^{\pi} d\theta \sin \theta \int_0^{2\pi} d\phi \left(\sin^2 \theta + \cos^2 \theta \right) = 4\pi R^3 e^{-R^2}.$$